🕳️
The Cyber Security Library
  • The Library
  • Offensive Security
    • Solar, Exploiting log4j
      • Reconnaissance
      • Discovery
      • Proof of Concept
      • Exploitation
    • Basic Authentication Bypass
      • Username Enumeration
      • Brute Force
      • Logic Flaw
      • Cookie Tampering
    • Insekube
      • Recon with Nmap
      • Checking out the web address
      • Creating a Reverse shell
      • Inside the Kubernetes pod
      • CVE-2021-43798
    • Snort
      • What is Snort? (For the uninitiated)
      • Task exercise
      • Traffic Generator
      • Brief overview of IDS and IPS
      • Checking Snort
      • Snort Sniffer mode
      • Packet Logger mode
    • Runtime Detection Evasion
      • Learning Objectives of AMSI
      • Runtime detections
      • AMSI Overview
      • AMSI Instrumentation
      • Powershell Downgrade
      • Powershell Reflection
      • Patching AMSI
    • Red team recon using OSINT
      • Taxonomy of Reconnaissance
      • Built-in tools
      • Advanced Searching
      • Specialized Search Engines
  • Malware
    • Introduction to Malware Analysis
      • What are the different types of malware analysis
      • Doing different types of analysis
      • Anti analysis techniques
    • Ransomeware: Maze
    • Exploring Steganography
    • Simple Trojan with Python
      • The Python Trojan
      • Breaking down the python code
  • Vulnerability Management
    • Nessus
      • Introduction
      • Nessus Essentials
      • Scans
      • Authenticated Scans
      • Results
      • Running custom scans
  • Cloud
    • AWS
      • AWS CDK: Deploy and using amazon SQS Que from Repo
        • Node modules and Bootstrapping troubleshooting
        • Sending and Receiving information from the stack
        • Destroying the stack and cleaning up
      • Using Different AWS Services with Splunk
        • AWS Config
          • How Does Config work?
          • How to enable Config
          • Settings
          • Aggregation
          • Creating Config Resource
          • Creating Aggregator
          • Adding Rules
        • CloudTrail
          • What is CloudTrail?
          • Features of CloudTrail
          • Benefits of CloudTrail
          • CloudTrail Event History
          • Securing CloudTrail
        • EventBridge
          • Configuring EventBridge and Event Patterns
          • EventBridge Targets
        • CloudWatch
          • The CloudWatch Dashboard
            • Virtual Machine
          • CloudWatch Alarms and Metric Filters
            • Searching logs using metric filters
            • CloudWatch Alarms
          • CloudWatch CIS Alarms
            • SNS
        • Configuring VPC Flow Logs
          • An introduction to VPC flow logs
        • Automating Incident Response with EventBridge
          • Creating Lambda functions
        • CloudTrail SIEM Integration (Splunk)
          • AWS architecture for integrating with Splunk
      • AWS DevOps EBS Volumes
        • CloudWatch
        • EBS Volume
        • Lambda
      • EKS Creating a deployment with AWS in the command Line
        • Setting up AWS Cloud9
        • Creating a Cluster
        • Creating Deployment
      • How to CloudShell SSH in to ec2 Instances
    • Azure
      • Worker CTF (Azure DevOps)
        • Enumeration
        • Using SVN
        • Exploring the Domain
        • Cracking Azure DevOps console
      • Software development environments and Azure DevOps pipeline abuse
        • Accessing Azure Devops
        • Exploring Project Pages
  • Splunk
    • Splunk SIEM Integration
      • AWS architecture for integrating with Splunk
    • Splunk Threat Hunting Ep.6 Credential Access
  • DevOps
    • Using AWS, Docker, Jenkins and SonarQube to improve code quality
      • Updating the Cloud Instance and Getting Docker
      • Installing SonarQube
      • Creating Jenkins Server
      • Manaing SonarQube and Jenkins
    • Creating a Codebuild project and getting the output with CloudWatch Logs
      • IAM
      • CodeBuild
  • CTF's
    • THM Wonderland
      • Nmap and Gobuster
      • Entering Wonderland
      • Privilege Escalation
    • Healthcare OpenEMR system -THM Plotted EMR
      • Recon with Nmap
      • Exploring the ports found
      • Gobuster
      • Searchsploit Open emr
    • Steam Cloud CTF Exploiting Kubernetes
      • SteamCloud Privilege Escalation
    • THM Flatline CTF
      • Recon with Nmap
      • Searchsploit for freeswitch
      • Using the exploit
      • Escalating my privileges
      • Gaining access inside the Windows RDP
    • Biteme CTF
      • Recon
      • Looking into the PHP code and decoding hexadecimal
      • Python script and Bash script
      • Bruteforcing MFA Code
      • Trying to gain access via SSH
      • Inside SSH
      • Fail2ban Privilege Escalation
    • Devoops CTF
      • Enumeration
      • Exploiting Web Page
      • Creating Python exploit
    • GoBox CTF
      • Enumeration
      • Using Burpsuite and creating Reverse shell
    • Explore: Android Box
      • Enumeration
      • Initial foothold
      • Privilege escalation
Powered by GitBook
On this page
  1. Offensive Security
  2. Runtime Detection Evasion

Runtime detections

PreviousLearning Objectives of AMSINextAMSI Overview

Last updated 3 years ago

When executing code or applications, it will almost always flow through a runtime, no matter the interpreter. This is most commonly seen when using Windows API calls and interacting with .NET. The and are the runtimes for .NET and are the most common you will encounter when working with Windows systems. In this task, there are no discussions on the specifics of runtimes; instead, it will discuss how they are monitored and malicious code is detected.

A runtime detection measure will scan code before execution in the runtime and determine if it is malicious or not. Depending on the detection measure and technology behind it, this detection could be based on string signatures, heuristics, or behaviours. If code is suspected of being malicious, it will be assigned a value, and if within a specified range, it will stop execution and possibly quarantine or delete the file/code.

Runtime detection measures are different from a standard anti-virus because they will scan directly from memory and the runtime. At the same time, anti-virus products can also employ these runtime detections to give more insight into the calls and hooks originating from code. In some cases, anti-virus products may use a runtime detection stream/feed as part of their heuristics.

This task will primarily focus on . AMSI is a runtime detection measure shipped natively with Windows and is an interface for other products and solutions.

CLR (Common Language Runtime)
DLR (Dynamic Language Runtime)
AMSI(Anti-Malware Scan Interface)