🕳️
The Cyber Security Library
  • The Library
  • Offensive Security
    • Solar, Exploiting log4j
      • Reconnaissance
      • Discovery
      • Proof of Concept
      • Exploitation
    • Basic Authentication Bypass
      • Username Enumeration
      • Brute Force
      • Logic Flaw
      • Cookie Tampering
    • Insekube
      • Recon with Nmap
      • Checking out the web address
      • Creating a Reverse shell
      • Inside the Kubernetes pod
      • CVE-2021-43798
    • Snort
      • What is Snort? (For the uninitiated)
      • Task exercise
      • Traffic Generator
      • Brief overview of IDS and IPS
      • Checking Snort
      • Snort Sniffer mode
      • Packet Logger mode
    • Runtime Detection Evasion
      • Learning Objectives of AMSI
      • Runtime detections
      • AMSI Overview
      • AMSI Instrumentation
      • Powershell Downgrade
      • Powershell Reflection
      • Patching AMSI
    • Red team recon using OSINT
      • Taxonomy of Reconnaissance
      • Built-in tools
      • Advanced Searching
      • Specialized Search Engines
  • Malware
    • Introduction to Malware Analysis
      • What are the different types of malware analysis
      • Doing different types of analysis
      • Anti analysis techniques
    • Ransomeware: Maze
    • Exploring Steganography
    • Simple Trojan with Python
      • The Python Trojan
      • Breaking down the python code
  • Vulnerability Management
    • Nessus
      • Introduction
      • Nessus Essentials
      • Scans
      • Authenticated Scans
      • Results
      • Running custom scans
  • Cloud
    • AWS
      • AWS CDK: Deploy and using amazon SQS Que from Repo
        • Node modules and Bootstrapping troubleshooting
        • Sending and Receiving information from the stack
        • Destroying the stack and cleaning up
      • Using Different AWS Services with Splunk
        • AWS Config
          • How Does Config work?
          • How to enable Config
          • Settings
          • Aggregation
          • Creating Config Resource
          • Creating Aggregator
          • Adding Rules
        • CloudTrail
          • What is CloudTrail?
          • Features of CloudTrail
          • Benefits of CloudTrail
          • CloudTrail Event History
          • Securing CloudTrail
        • EventBridge
          • Configuring EventBridge and Event Patterns
          • EventBridge Targets
        • CloudWatch
          • The CloudWatch Dashboard
            • Virtual Machine
          • CloudWatch Alarms and Metric Filters
            • Searching logs using metric filters
            • CloudWatch Alarms
          • CloudWatch CIS Alarms
            • SNS
        • Configuring VPC Flow Logs
          • An introduction to VPC flow logs
        • Automating Incident Response with EventBridge
          • Creating Lambda functions
        • CloudTrail SIEM Integration (Splunk)
          • AWS architecture for integrating with Splunk
      • AWS DevOps EBS Volumes
        • CloudWatch
        • EBS Volume
        • Lambda
      • EKS Creating a deployment with AWS in the command Line
        • Setting up AWS Cloud9
        • Creating a Cluster
        • Creating Deployment
      • How to CloudShell SSH in to ec2 Instances
    • Azure
      • Worker CTF (Azure DevOps)
        • Enumeration
        • Using SVN
        • Exploring the Domain
        • Cracking Azure DevOps console
      • Software development environments and Azure DevOps pipeline abuse
        • Accessing Azure Devops
        • Exploring Project Pages
  • Splunk
    • Splunk SIEM Integration
      • AWS architecture for integrating with Splunk
    • Splunk Threat Hunting Ep.6 Credential Access
  • DevOps
    • Using AWS, Docker, Jenkins and SonarQube to improve code quality
      • Updating the Cloud Instance and Getting Docker
      • Installing SonarQube
      • Creating Jenkins Server
      • Manaing SonarQube and Jenkins
    • Creating a Codebuild project and getting the output with CloudWatch Logs
      • IAM
      • CodeBuild
  • CTF's
    • THM Wonderland
      • Nmap and Gobuster
      • Entering Wonderland
      • Privilege Escalation
    • Healthcare OpenEMR system -THM Plotted EMR
      • Recon with Nmap
      • Exploring the ports found
      • Gobuster
      • Searchsploit Open emr
    • Steam Cloud CTF Exploiting Kubernetes
      • SteamCloud Privilege Escalation
    • THM Flatline CTF
      • Recon with Nmap
      • Searchsploit for freeswitch
      • Using the exploit
      • Escalating my privileges
      • Gaining access inside the Windows RDP
    • Biteme CTF
      • Recon
      • Looking into the PHP code and decoding hexadecimal
      • Python script and Bash script
      • Bruteforcing MFA Code
      • Trying to gain access via SSH
      • Inside SSH
      • Fail2ban Privilege Escalation
    • Devoops CTF
      • Enumeration
      • Exploiting Web Page
      • Creating Python exploit
    • GoBox CTF
      • Enumeration
      • Using Burpsuite and creating Reverse shell
    • Explore: Android Box
      • Enumeration
      • Initial foothold
      • Privilege escalation
Powered by GitBook
On this page
  1. Offensive Security
  2. Runtime Detection Evasion

AMSI Instrumentation

PreviousAMSI OverviewNextPowershell Downgrade

Last updated 3 years ago

The way AMSI is instrumented can be complex, including multiple DLLs and varying execution strategies depending on where it is instrumented. By definition, AMSI is only an interface for other anti-malware products; AMSI will use multiple provider DLLs and API calls depending on what is being executed and at what layer it is being executed.

AMSI is instrumented from System.Management.Automation.dll, a .NET assembly developed by Windows; From the Microsoft docs, "Assemblies form the fundamental units of deployment, version control, reuse, activation scoping, and security permissions for .NET-based applications." The .NET assembly will instrument other DLLs and API calls depending on the interpreter and whether it is on disk or memory. The below diagram depicts how data is dissected as it flows through the layers and what DLLs/API calls are being instrumented.

In the above graph data will begin flowing dependent on the interpreter used (PowerShell/VBScript/etc.) Various API calls and interfaces will be instrumented as the data flows down the model at each layer. It is important to understand the complete model of AMSI, but we can break it down into core components, shown in the diagram below.

Most of this research and known bypasses are placed in the Win32 API layer, manipulating the API call.

You may also notice the "Other Applications" interface from AMSI. Third-parties such as AV providers can instrument AMSI from their products. Microsoft documents and the .

We can break down the code for AMSI PowerShell instrumentation to better understand how it is implemented and checks for suspicious content. To find where AMSI is instrumented, we can use maintained by . InsecurePowerShell is a GitHub fork of PowerShell with security features removed; this means we can look through the compared commits and observe any security features. AMSI is only instrumented in twelve lines of code under src/System.Management.Automation/engine/runtime/CompiledScriptBlock.cs. These twelve lines are shown below.

AmsiScanBuffer
AMSI functions
AMSI stream interface
InsecurePowerShell
Cobbr
Note: AMSI is only instrumented when loaded from memory when executed from the CLR. It is assumed that if on disk MsMpEng.exe (Windows Defender) is already being instrumented.